\(\int \frac {(c x^2)^{3/2}}{x^5 (a+b x)^2} \, dx\) [907]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 91 \[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=-\frac {c \sqrt {c x^2}}{a^2 x^2}-\frac {b c \sqrt {c x^2}}{a^2 x (a+b x)}-\frac {2 b c \sqrt {c x^2} \log (x)}{a^3 x}+\frac {2 b c \sqrt {c x^2} \log (a+b x)}{a^3 x} \]

[Out]

-c*(c*x^2)^(1/2)/a^2/x^2-b*c*(c*x^2)^(1/2)/a^2/x/(b*x+a)-2*b*c*ln(x)*(c*x^2)^(1/2)/a^3/x+2*b*c*ln(b*x+a)*(c*x^
2)^(1/2)/a^3/x

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {15, 46} \[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=-\frac {2 b c \sqrt {c x^2} \log (x)}{a^3 x}+\frac {2 b c \sqrt {c x^2} \log (a+b x)}{a^3 x}-\frac {b c \sqrt {c x^2}}{a^2 x (a+b x)}-\frac {c \sqrt {c x^2}}{a^2 x^2} \]

[In]

Int[(c*x^2)^(3/2)/(x^5*(a + b*x)^2),x]

[Out]

-((c*Sqrt[c*x^2])/(a^2*x^2)) - (b*c*Sqrt[c*x^2])/(a^2*x*(a + b*x)) - (2*b*c*Sqrt[c*x^2]*Log[x])/(a^3*x) + (2*b
*c*Sqrt[c*x^2]*Log[a + b*x])/(a^3*x)

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[a^IntPart[m]*((a*x^n)^FracPart[m]/x^(n*FracPart[m])), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\left (c \sqrt {c x^2}\right ) \int \frac {1}{x^2 (a+b x)^2} \, dx}{x} \\ & = \frac {\left (c \sqrt {c x^2}\right ) \int \left (\frac {1}{a^2 x^2}-\frac {2 b}{a^3 x}+\frac {b^2}{a^2 (a+b x)^2}+\frac {2 b^2}{a^3 (a+b x)}\right ) \, dx}{x} \\ & = -\frac {c \sqrt {c x^2}}{a^2 x^2}-\frac {b c \sqrt {c x^2}}{a^2 x (a+b x)}-\frac {2 b c \sqrt {c x^2} \log (x)}{a^3 x}+\frac {2 b c \sqrt {c x^2} \log (a+b x)}{a^3 x} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.65 \[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=\left (c x^2\right )^{3/2} \left (\frac {-a-2 b x}{a^2 x^4 (a+b x)}-\frac {2 b \log (x)}{a^3 x^3}+\frac {2 b \log (a+b x)}{a^3 x^3}\right ) \]

[In]

Integrate[(c*x^2)^(3/2)/(x^5*(a + b*x)^2),x]

[Out]

(c*x^2)^(3/2)*((-a - 2*b*x)/(a^2*x^4*(a + b*x)) - (2*b*Log[x])/(a^3*x^3) + (2*b*Log[a + b*x])/(a^3*x^3))

Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.81

method result size
default \(-\frac {\left (c \,x^{2}\right )^{\frac {3}{2}} \left (2 b^{2} \ln \left (x \right ) x^{2}-2 b^{2} \ln \left (b x +a \right ) x^{2}+2 a b \ln \left (x \right ) x -2 \ln \left (b x +a \right ) x a b +2 a b x +a^{2}\right )}{x^{4} a^{3} \left (b x +a \right )}\) \(74\)
risch \(\frac {c \sqrt {c \,x^{2}}\, \left (-\frac {2 b x}{a^{2}}-\frac {1}{a}\right )}{x^{2} \left (b x +a \right )}-\frac {2 b c \ln \left (x \right ) \sqrt {c \,x^{2}}}{a^{3} x}+\frac {2 c \sqrt {c \,x^{2}}\, b \ln \left (-b x -a \right )}{x \,a^{3}}\) \(79\)

[In]

int((c*x^2)^(3/2)/x^5/(b*x+a)^2,x,method=_RETURNVERBOSE)

[Out]

-(c*x^2)^(3/2)*(2*b^2*ln(x)*x^2-2*b^2*ln(b*x+a)*x^2+2*a*b*ln(x)*x-2*ln(b*x+a)*x*a*b+2*a*b*x+a^2)/x^4/a^3/(b*x+
a)

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.71 \[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=-\frac {{\left (2 \, a b c x + a^{2} c - 2 \, {\left (b^{2} c x^{2} + a b c x\right )} \log \left (\frac {b x + a}{x}\right )\right )} \sqrt {c x^{2}}}{a^{3} b x^{3} + a^{4} x^{2}} \]

[In]

integrate((c*x^2)^(3/2)/x^5/(b*x+a)^2,x, algorithm="fricas")

[Out]

-(2*a*b*c*x + a^2*c - 2*(b^2*c*x^2 + a*b*c*x)*log((b*x + a)/x))*sqrt(c*x^2)/(a^3*b*x^3 + a^4*x^2)

Sympy [F]

\[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=\int \frac {\left (c x^{2}\right )^{\frac {3}{2}}}{x^{5} \left (a + b x\right )^{2}}\, dx \]

[In]

integrate((c*x**2)**(3/2)/x**5/(b*x+a)**2,x)

[Out]

Integral((c*x**2)**(3/2)/(x**5*(a + b*x)**2), x)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.64 \[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=\frac {2 \, b c^{\frac {3}{2}} \log \left (b x + a\right )}{a^{3}} - \frac {2 \, b c^{\frac {3}{2}} \log \left (x\right )}{a^{3}} - \frac {2 \, b c^{\frac {3}{2}} x + a c^{\frac {3}{2}}}{a^{2} b x^{2} + a^{3} x} \]

[In]

integrate((c*x^2)^(3/2)/x^5/(b*x+a)^2,x, algorithm="maxima")

[Out]

2*b*c^(3/2)*log(b*x + a)/a^3 - 2*b*c^(3/2)*log(x)/a^3 - (2*b*c^(3/2)*x + a*c^(3/2))/(a^2*b*x^2 + a^3*x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((c*x^2)^(3/2)/x^5/(b*x+a)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Limit: Max order reached or unable to make series expansion Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c x^2\right )^{3/2}}{x^5 (a+b x)^2} \, dx=\int \frac {{\left (c\,x^2\right )}^{3/2}}{x^5\,{\left (a+b\,x\right )}^2} \,d x \]

[In]

int((c*x^2)^(3/2)/(x^5*(a + b*x)^2),x)

[Out]

int((c*x^2)^(3/2)/(x^5*(a + b*x)^2), x)